Chem. Ber. 114, 1407 - 1412 (1981)

Reaktionen des Chlorarsiniden-Komplexes $ClAs[Cr(CO)_5]_2$ mit zweizähnigen Chelatliganden

Joachim von Seyerl, Beate Sigwarth und Gottfried Huttner*

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz

Eingegangen am 26. August 1980

Der Chlorarsiniden-Komplex $ClAs[Cr(CO)_{3}]_{2}$ (1) reagiert mit OH-funktionellen Chelatliganden HO B wie 2,4-Pentandion, 1,3-Diphenyl-1,3-propandion, Tropolon oder 8-Hydroxychinolin unter Chlor-Substitution und Bildung stabiler Arsen(+1)-Chelatkomplexe B_{O} -As[Cr(CO)₃]_{2} (2a – d). Eine Röntgenstrukturanalyse des Acetylacton-Derivates 2a belegt die Konstitution der Chelatkomplexe.

Reactions of the Chloroarsinidene Complex ClAs[Cr(CO)₅]₂ with Bidentate Chelating Ligands

The chloroarsinidene complex $ClAs[Cr(CO)_{s}]_2$ (1) undergoes chlorine substitution with OH-functional chelating ligands HOB such as 2,4-pentanedione, 1,3-diphenyl-1,3-propanedione, tropolone, or 8-hydroxyquinoline to form stable arsenic(+1) chelate complexes B_{O} -As $[Cr(CO)_{s}]_2$ (2a - d). An X-ray structure analysis of the acetylactone derivative 2a exemplifies the constitution of the chelate complexes.

Arsinidenkomplexe RAs[ML_n]₂ [ML_n = 16-Elektronen-Übergangsmetallkomplex-Fragment wie (CO)₅Cr, C₅H₅(CO)₂Mn] enthalten trigonal-planar koordiniertes Arsen(+1)^{1,2)}. Der Elektronenmangel am Sextett-Liganden R – <u>As</u> wird durch Rückbindung aus gefüllten Metallorbitalen soweit ausgeglichen, daß die Verbindungen, ähnlich wie ihre Homologen, die Phosphinidenkomplexe RP[ML_n]₂³⁾ und die Stibinidenkomplexe RSb[ML_n]₂⁴⁾, als tieffarbige stabile Substanzen isoliert werden können. Auch in Arsinidenkomplexen verhalten sich die Arsinidenliganden R – <u>As</u> jedoch immer noch wie Elektronenmangelverbindungen und reagieren mit Lewis-Basen unter Bildung von nur schwach farbigen Addukten mit vierfach koordiniertem Arsen(+1)^{5,6)}.

Enthält der Substituent R in RAs $[ML_n]_2$ nucleophile Zentren in sterisch günstiger 4oder 5-Stellung zum Arsenatom, so entstehen als innere Addukte stabile Chelatkomplexe, über deren Darstellung und Eigenschaften wir an ausgewählten Beispielen für $ML_n = Cr(CO)_5$ berichten.

Komplex stabilisierte Arsen(+1)-Chelate sind unter Halogensubstitution einfach aus ClAs $[Cr(CO)_{5}]_{2}(1)$ zugänglich.

Die Substitution der Halogenfunktion in 1 erfolgt hier wie in anderen Fällen²⁾ über eine primäre Adduktbildung der Lewis-Base BOH mit den koordinativ ungesättigten Arsenliganden (Gleichung): Versetzt man eine 10^{-3} M Lösung von 1 in CH₂Cl₂ mit Acetylaceton, so beobachtet man, daß die blaue Farbe von 1 langsam verschwindet und bei Zugabe von etwa 2 Äquivalenten Acetylaceton nach einer Stunde eine vollständig gelbe

Chem. Ber. 114 (1981)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/0404 – 1407 \$ 02.50/0 Lösung entstanden ist. Beim Abziehen der flüchtigen Bestandteile bildet sich aus der gelben Lösung jedoch nicht **2a**, vielmehr erhält man 1 unverändert zurück. Diese Beobachtung läßt sich im Sinne der Gleichung auf eine reversible Adduktbildung zurückführen, die auch mit anderen Sauerstoff-Donator-Liganden⁵⁾ beobachtet wurde. Um die Halogensubstitution unter Bildung von **2a** einzuleiten, muß eine Hilfsbase zugesetzt werden. Am einfachsten gelingt dies durch Überleiten von NH₃ über frisch bereitete blaue CH₂Cl₂-Lösungen von 1 und Acetylaceton im Molverhältnis 1:2, wobei eine sofortige irreversible Entfärbung der Lösung unter Bildung von orangegelbem **2a** und NH₄Cl eintritt.

1,3-Diphenyl-1,3-propandion liefert bei der Umsetzung mit 1 nach Überleiten von NH₃ über die Lösung der Reaktanden in analoger Reaktion 2b in Form schwarzer mäßig luftstabiler Kristalle, die sich in Toluol mit intensiv roter Farbe lösen.

Der Tropolonatokomplex 2c sowie der Chinolinatokomplex 2d entstehen beim Zutropfen von äquimolaren Lösungen der Chelatliganden in CH_2Cl_2 zu Lösungen des Komplexes 1 in CH_2Cl_2 sofort, ohne Zugabe einer Hilfsbase. Die Reaktion kann wegen der sofortigen Entfärbung der blauen Lösung von 1 wie eine Titration durchgeführt werden. Beide Verbindungen werden kristallisiert erhalten.

Spektroskopische Untersuchungen

Im IR-Spektrum findet man im Bereich der v_{CO} -Frequenzen jeweils 4 – 7 Banden, die ähnliche Lagen aufweisen (Tab. 1). Die Vielzahl der beobachteten Banden weist auf Verbindungen mit jeweils mindestens zwei verschiedenen Pentacarbonylchrom-Einheiten in einem Rotamerengleichgewicht hin, wie es für Basenaddukte am Chlorar-

			,		2.101(00)	<u>, , , , , , , , , , , , , , , , , , , </u>		op,
L =								
Acetylaceton	28	2080 (w)	2054 (m)	1990 (m)	1972 (s)			1945 (m)
Diphenylpro-								
pandion	2 b	2077 (w)	2053 (m)		1970 (s)			1944 (m)
Tropolon	2c	2077 (w)	2050 (m)		1973 (s)	1969 (sh)		1942 (w)
8-(HO)-Ching	olin							
	2 đ	2076 (w)	2053 (m)	1995 (w)	1970 (sh)	1966 (s)	1957 (s)	1940 (m)

Tab. 1. v_{CO} -Banden (cm⁻¹) der Chelatkomplexe LAs[(CO)₅Cr]₂ (n-Pentan, CaF₂-Optik)

sinidenkomplex 1 bereits beobachtet wurde^{5,6)}. Die Bandenlage ist dabei, verglichen mit den ionischen Adduktkomplexen des Typs (X)ClAs[(CO)₅Cr]₂⁻NR₄⁺ (X = Cl, Br, 1, N₃, SCN, CN)⁶⁾, aufgrund der fehlenden negativen Ladung um durchschnittlich 10 cm⁻¹ kurzwellig verschoben. Im Vergleich zum Chlorarsinidenkomplex 1 läßt sich nur eine geringfügige Verschiebung der v_{CO}-Frequenzen der Verbindungen **2a** – **d** nach niedrigen Wellenzahlen beobachten. Die Bandenlage für den Chinolinatokomplex **2d** deckt sich weitgehend mit der des neutralen Adduktkomplexes Ph₃P(Cl)-As[(CO)₅Cr]₂⁵⁾.

2a - d geben im ¹H-NMR-Spektrum die Chelatliganden durch ihre jeweiligen spezifischen Signale zu erkennen. Die Protonenresonanzen des Acetylacetonatrestes liegen in 2a bei 1.51 und 4.68 ppm (C₆D₆, ext. TMS), ihre Intensitäten verhalten sich wie erwartet 6:1. Die Absorption des = CH-Protons in Verbindung 2b ist um 0.3 ppm gegenüber dem entsprechenden Signal des freien Diphenylpropandions zu tieferem Feld verschoben und liegt bei 7.07 ppm (CD₂Cl₂, ext. TMS). Die Multipletts der Phenylprotonensignale werden bei 7.6 – 7.86 bzw. 8.45 – 8.54 ppm beobachtet.

Der Tropolonatokomplex 2c zeigt ¹H-NMR-Signale bei 8.21 - 8.40 ppm (C₆D₆, ext. TMS). Die Resonanzen des 8-Chinolinolat-Restes in 2d entsprechen dem für diesen Rest charakteristischen Bandenmuster⁷, wobei die einzelnen Signalgruppen gegenüber freiem 8-Hydroxychinolin⁷ geringfügig zu tiefem Feld verschoben sind (exp. Teil).

Im Massenspektrum werden für alle Verbindungen die für die Molekül-Ionen erwarteten Signale gefunden. Diese gehen jeweils durch sukzessive CO-Abspaltung in die bis zu 10 Carbonylgruppen ärmeren Fragment-Ionen über. Weitere Signale werden für AsOCr⁺ und AsCr⁺ beobachtet.

Röntgenstrukturanalyse von 2a

Durch Abkühlen einer Lösung von 2a in CH₂Cl₂/n-Pentan können für die Röntgenstrukturanalyse geeignete Kristalle erhalten werden.

Kristalldaten: $C_{15}H_7AsCr_2O_{12}$, Molmasse 558.1, a = 930, b = 1324, c = 1963 pm, $\beta = 121^\circ$, $V = 2070 \times 10^6$ pm³, Raumgruppe $P 2_1/c$, $d_{ber} = 1.79$ gcm⁻³, $\mu_{Mo} = 28.3$ cm⁻¹.

Unter Verwendung von 1670 unabhängigen von Null verschiedenen Reflexdaten wurde ein R-Wert von 0.039 erreicht. Die Messung erfolgte auf einem P3-Diffraktometer der Firma Syntex bei $T = 190 \text{ K} (\lambda(\text{Mo-}K_{\alpha}) = 71.069 \text{ pm}, \omega$ -scan, $\Delta \omega = 1^{\circ}, 1.0 \le \dot{\omega} \le 29.3^{\circ} \text{ min}^{-1}, 2.5 \le 2\Theta \le 40^{\circ})$. Die wichtigsten Abstände und Winkel enthält Tab. 2, die Atomlagen sind in Tab. 3 wiedergegeben.

Cr1 – As	239.0 (1)	01 - As - 02	92.1 (2)
Cr2-As	237.8 (1)	O1 - As - Cr1	105.4 (2)
01 – As	192.9 (6)	01 - As - Cr2	105.6 (2)
O2 - As	192.4 (5)	Cr1 – As – Cr2	136.5 (1)
Cr - C _{COra}	185.9 (20)	02 - As - Cr1	105.0 (2)
$Cr - C_{COax}$	184.8 (7)	O2 – As – Cr2	103.5 (2)
C2-C3	137.1 (12)		
C3-C4	136.3 (14)		
C4-O2	127.8 (9)		
C2-01	127.9 (9)		

Tab. 2. Abstände (pm) und Winkel (°)

Atom	x/a	у/ъ	z/c	В
A Com A Gr (1) Cr (1) Cr (1) C(11) C(12) C(12) C(13) O(14) O(14) O(14) O(14) C(15) O(15) C(21) C(21) C(21) C(22) C(2) C	x/a 0.72961 (8) 0.5417 (1) 0.8597 (1) 0.4016 (9) 0.3117 (7) 0.6690 (9) 0.4214 (7) 0.7067 (9) 0.8059 (7) 0.6191 (8) 0.620 (9) 0.6191 (8) 0.2701 (6) 0.9562 (9) 1.0206 (6) 1.0206 (6) 1.0207 (7) 0.3339 (9) 0.312 (7) 0.6496 (9) 0.9325 (8) 0.9130 (6) 0.9155 (9) 0.310 (1) 0.6126 (5) 1.057 (1) 0.576 (1) 1.061 0.6416 0.310 (0) 0.5143	0.20000(5) 0.32373(7) 0.16723(8) 0.4226(5) 0.4838(4) 0.3602(4) 0.4217(5) 0.4846(4) 0.2971(5) 0.2265(5) 0.1667(4) 0.1262(4) 0.1262(4) 0.1263(5) 0.2106(4) 0.3004(6) 0.3004(6) 0.3005(5) -0.0511(4) 0.1350(4) 0.1350(4) 0.135(6) 0.135(5) -0.0795(5) 0.735(5) 0.135 0.123	0.21024(4) 0.11904(6) 0.34882(6) 0.0504(4) 0.0538(3) 0.1397(4) 0.2336(4) 0.2336(4) 0.2336(4) 0.2336(4) 0.2336(4) 0.0357(3) 0.0632(4) 0.0632(4) 0.0357(3) 0.4564(4) 0.357(3) 0.4564(4) 0.311(4) 0.3311(4) 0.3311(4) 0.3311(4) 0.3311(4) 0.3311(4) 0.3114(3) 0.1860(3) 0.1621(3) 0.1624(5) 0.1249(4) 0.0944(5) 0.1249(4) 0.0944(5) 0.124 0.030 0.162 0.103 0.162 0.103 0.162 0.103 0.1249(4) 0.0944(5) 0.094	$\begin{array}{c} 3.4(1)\\ 4.6(1)\\ 3.7(2)\\ 5.8(1)\\ 3.5(2)\\ 5.0(1)\\ 2.9(1)\\ 4.2(1)\\ 2.9(1)\\ 4.2(1)\\ 3.2(1)\\ 4.2(1)\\ 3.4(2)\\ 5.5(1)\\ 3.4(2)\\ 5.5(1)\\ 3.6(2)\\ 5.6(1)\\ 2.3(1)\\ 4.1(1)\\ \end{array}$
Atom	011	B22 B33	B12	B13 B23
As Cr(1) Cr(2) D (1) O (2) C (1) C (2) C (1) C (2) C (3) C (4) C (5)	2.28(4) 2. 2.23(5) 2. 2.44(5) 2. 2.6(2) 4. 3.0(2) 2. 6.2(5) 6. 3.9(4) 4. 6.1(5) 3. 4.1(4) 3. 6.9(5) 2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.02(2) & 1 \\ 0.12(4) & 1 \\ -0.16(4) & 1 \\ 0.2(2) & 2 \\ -0.6(2) & 2 \\ 2.3(4) & 5 \\ 2.1(3) & 2 \\ 0.5(4) & 4 \\ 1.1(3) & 1 \\ -0.1(3) & 3 \end{array}$	$\begin{array}{rrrr} .48(3) & -0.18(2)\\ .24(5) & 0.08(4)\\ .30(5) & 0.18(4)\\ .0(2) & -0.4(2)\\ .0(2) & -1.3(2)\\ .6(5) & 2.3(4)\\ .5(3) & 1.7(3)\\ .1(4) & -0.5(3)\\ .3(3) & 0.6(3)\\ .4(4) & -0.9(3)\\ \end{array}$

Tab. 3. Lageparameter und Temperaturfaktoren $(\dot{A}^2)^{*}$

*) Der anisotrope Temperaturfaktor ist gegeben durch: exp $[-1/4(B_{11}h^2a^{*2} + \cdots 2B_{23}klb^*c^*)]$ in \dot{A}^2

Abb. 1. Struktur der Verbindung $(C_5H_7O_2)As[(CO)_5Cr]_2$ (2a)

Diskussion

Im Komplex $(C_5H_7O_2)As[(CO)_5Cr]_2$ (2a) ist das einwertige Arsenatom tetraedrisch von einem Acetylacetonat-Chelatliganden sowie von zwei $(CO)_5Cr$ -Einheiten umgeben. Der Chelatligand ist planar, die mittlere Abweichung aus der idealen Ebene durch alle Atome des Liganden beträgt 3.5 pm. Die As – O-Bindungslängen von 192.4 bzw. 192.9 pm sind innerhalb der Standardabweichung gleich. Sie sind deutlich länger als die As – O-Abstände in dem als Diolat-Komplex zu formulierenden Dioxaarsorinkomplex $(CO)_5CrAsPh(C_5H_6O_2)$ (178 pm)⁸, in dem das Arsen zwar ebenfalls die Koordinationszahl 4 aufweist, aber als Arsen (+ 3) zwei kovalente Arsen-Sauerstoff-Bindungen ausbildet. In 2a kommt dem Arsen dagegen die formale Oxidationsstufe + 1 zu; in der einfachen Valenzstrichschreibweise ist nur eine As – O-Bindung kovalent, während die andere als koordinative Wechselwirkung eines Keto-Sauerstoffs mit dem Arsen erscheint. Beide Modellvorstellungen, die niedrige Oxidationsstufe und die zum Teil koordinative Bindung des Sauerstoffs, lassen im Einklang mit der Beobachtung für 2a längere As – O-Abstände erwarten als für Diolat-Derivate von Arsen(+ 3).

Für Chelatkomplexe des dreiwertigen Arsens wurden in der Verbindung $K[As(C_6H_4O_2)_2] As - O-Abstände von 180.5 - 199.7 pm gefunden⁹⁾. Die Cr - As-Bindungslängen im Komplex$ **2a**sind relativ kurz (238.4 pm) und können gut mit den Cr - As-Abständen in Arsinidenkomplexen verglichen werden (PhAs[(CO)₅Cr]₂ 238 pm^{1b)}, ClAs[(CO)₅Cr]₂ 232 pm²⁾). Im Adduktkomplex Ph₃P(Cl)As[(CO)₅Cr]₂ wurden Cr - As-Abstände von 247.5 pm gefunden⁵⁾.

Die $Cr - C_{CO}$ -Abstände sind im Mittel mit 185.3 pm um 5 pm kürzer als in (CO)₆Cr (190.3 pm)¹⁰⁾ und deuten einen Transfer der negativen Ladung an. Ein Unterschied der Bindungslängen der äquatorialen und axialen Carbonylgruppen wird innerhalb der Standardabweichung nicht beobachtet.

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und dem Fonds der Chemischen Industrie, Frankfur1/M., für die Unterstützung dieser Arbeit.

Experimenteller Teil

Sämtliche Arbeiten wurden unter N₂ als Schutzgas in wasserfreien Lösungsmitteln durchgeführt. Zum Filtrieren und zur Chromatographie wurde Silicagel (0.063 - 0.2 mm, Merck) verwendet, das vorher im Ölpumpenvakuum getrocknet und unter N₂ aufbewahrt wurde. – IR-Spektren: Zeiss IMR 40, CaF₂-Küvetten. – Massenspektren: Atlas CH7, Einlaß Ofenschiffchen. – ¹H-NMR-Spektren: Bruker WP 80 CW. – Für die Durchführung der Elementaranalysen sind wir Frau *R. Naserke* dankbar. – Die Ausbeuten sind auf 1 bezogen.

 μ -(Acetylacetonatoarsen)-bis(pentacarbonylchrom) (2a): Über die Lösung von 250 mg (0.50 mmol) ClAs[Cr(CO)₅]₂ (1) in 20 ml CH₂Cl₂ wird nach Versetzen mit 0.1 ml (1 mmol) Acetylaceton 3s gasförmiges Ammoniak geleitet. Dabei ist ein Farbumschlag von blau nach gelb zu beobachten. Das Lösungsmittel wird abgezogen, der Rückstand in Toluol aufgenommen und die Lösung über 2 cm Kieselgel filtriert. Nach Umkristallisieren aus Methylenchlorid/n-Pentan erhält man gelbrote Kristalle, Schmp. 108 °C, Ausb. 190 mg (0.34 mmol, 68%). – MS [m/e (rel. Int. in %)]: M⁺ 558 (40), M⁺ – 5CO 418 (10), M⁺ – 6CO 390 (10), M⁺ – 7CO 362 (20), M⁺ – 8CO 334 (50), M⁺ – 9CO 306 (50), M⁺ – 10CO 278 (100), AsCr₂O⁺ 195 (10), AsCr₂⁺ 179 (20). – ¹H-NMR (C₆D₆, rel. ext. TMS): $\delta = 1.51$ (s), 4.68 (s), rel. Int. 6:1.

C15H7AsCr2O12 (558.1) Ber. C 32.25 H 1.25 Gef. C 32.22 H 1.11

 μ -(1,3-Diphenyl-1,3-propandionatoarsen)-bis(pentacarbonylchrom) (2b): Die Darstellung erfolgt analog zu 2a aus 200 mg (0.40 mmol) 1, 20 ml CH₂Cl₂ und 90 mg (0.40 mmol) 1,3-Diphenyl-1,3-propandion. Schmp. 138 °C, Ausb. 190 mg (0.28 mmol, 70%). - MS [*m/e* (rel. Int. in %)]: M⁺ 682 (20), M⁺ - 5CO 542 (60), M⁺ - 6CO 514 (50), M⁺ - 7CO 486 (70), M⁺ - 8CO 458 (90), M⁺ - 9CO 430 (90), M⁺ - 10CO 402 (100). - ¹H-NMR (CDCl₃, rel. ext. TMS): δ = 7.07 (s), 7.86 - 7.6 und 8.54 - 8.45 (m), rel. lnt. 1:10.

C25H11AsCr2O12 (682.3) Ber. C 43.96 H 1.61 Gef. C 43.74 H 1.59

 μ -(Tropolonatoarsen)-bis(pentacarbonylchrom) (2c): Zu einer Lösung von 160 mg (0.32 mmol) 1 in 20 ml CH₂Cl₂ wird unter Rühren so lange eine Lösung von 39 mg (0.32 mmol) Tropolon in CH₂Cl₂ getropft, bis die blaue Farbe verschwunden ist. Das aus dieser orangefarbenen Lösung auf 3 g Kieselgel aufgezogene Reaktionsprodukt wird bei – 30 °C chromatographiert. Mit n-Pentan/Toluol (10:1) wird 2c als breite, orangefarbene Zone eluiert, die nach Umkristallisieren aus CH₂Cl₂/n-Pentan orangefarbene Kristalle gibt. Schmp. 158 °C, Ausb. 120 mg (0.21 mmol, 65%). – MS [m/e (rel. Int. in %)]: M⁺ 580 (20), M⁺ – 5CO 440 (10), M⁺ – 6CO 412 (10), M⁺ – 7CO 384 (20), M⁺ – 8CO 356 (40), M⁺ – 9CO 328 (30), M⁺ – 10CO 300 (100), AsCr₂⁺ 179 (20). – ¹H-NMR (C₆D₆, rel. ext. TMS): $\delta = 8.21 - 8.40$ (m).

C17H3AsCr2O12 (580.1) Ber. C 35.19 H 0.86 Gef. C 35.16 H 0.80

 μ -(&-Chinolinolatoarsen)-bis(pentacarbonylchrom) (2d): Eine Lösung vom 58 mg (0.40 mmol) 8-Hydroxychinolin in 10 ml CH₂Cl₂ wird unter Rühren zu einer Lösung von 200 mg (0.40 mmol) 1 in 20 ml CH₂Cl₂ getropft, wobei sich die anfangs blaue Lösung gelb färbt. Nach Aufziehen auf 3 g Kieselgel erfolgt Chromatographie bei - 30 °C. Mit Toluol kann man eine breite gelbe Zone eluieren, die nach Umkristallisieren aus CH₂Cl₂/n-Pentan gelbe Kristalle ergibt, Schmp. 169 °C, Ausb. 160 mg (0.27 mmol, 66 %). - MS [m/e (rel. lnt. in %)]: M⁺ 603 (20), M⁺ - 5CO 463 (30), M⁺ - 7CO 407 (30), M⁺ - 8CO 379 (50), M⁺ - 9CO 351 (60), M⁺ - 10CO 323 (100), AsCr₂O⁺ 195 (80), AsCr₂⁺ 179 (30). - ¹H-NMR ([D₆]Aceton, rel. ext. TMS): δ = 7.40-7.95 (m), rel. lnt. 3), 8.95 - 9.05 (d, rel. lnt. 1), 8.08 - 8.30 (dd, rel. lnt. 1), 9.24 - 9.26 (d, rel. lnt. 1). C₁₉H₆AsCr₂NO₁₁ (603.2) Ber. C 37.81 H 0.99 N 2.32 Gef. C 37.57 H 1.43 N 2.03

²⁾ J. v. Seyerl, B. Sigwarth, H.-G. Schmid, G. Mohr, A. Frank, M. Marsili und G. Huttner, Chem. Ber. 114, 1392 (1981), vorstehend.

- ⁶ J. v. Seyerl, B. Sigwarth und G. Huttner, Chem. Ber. 114, 727 (1981).
- ⁷⁾ B. C. Baker und D. T. Sawyer, Annal. Chem. 40, 1945 (1968).
- ⁸⁾ J. v. Seyerl, G. Huttner und C. Krüger, Z. Naturforsch. Teil B 35, 1552 (1980).
- ⁹⁾ A. C. Shapski, Chem. Commun. 1966, 10.

[281/80]

 ¹⁾ ^{1a)} G. Huttner und H.-G. Schmid, Angew. Chem. **87**, 454 (1975); Angew. Chem., Int. Ed. Engl. **14**, 433 (1975). - ^{1b)} G. Huttner, J. v. Seyerl, M. Marsili und H.-G. Schmid, Angew. Chem. **87**, 455 (1975); Angew. Chem., Int. Ed. Engl. **14**, 434 (1975). - ^{1c)} J. v. Seyerl, U. Moering, A. Wagner, A. Frank und G. Huttner, Angew. Chem. **90**, 912 (1978); Angew. Chem., Int. Ed. Engl. **17**, 844 (1978).

³⁾ G. Huttner, H.-D. Müller, A. Frank und H. Lorenz, Angew. Chem. 87, 714 (1975); Angew. Chem., Int. Ed. Engl. 14, 705 (1975).

⁴⁾ J. v. Seyerl und G. Huttner, Angew. Chem. **90**, 911 (1978); Angew. Chem., Int. Ed. Engl. 17, 843 (1978).

⁵⁾ J. v. Seyerl und G. Huttner, Angew. Chem. **91**, 244 (1979); Angew. Chem., Int. Ed. Engl. **18**, 233 (1979).

¹⁰⁾ A. Withaker und J. W. Jeffery, Acta Crystallogr. 23, 977 (1967).